

University of Sargodha

BS 4th Term Examination 2024

Subject: Computer Science

Paper: Linear Algebra (MATH-202/MATH-3215)

Time Allowed: 02:30 Hours

(For Regular & Retake Students)

Maximum Marks: 60

Note: Objective part is compulsory. Attempt any three questions from subjective part.

Objective Part (Compulsory)

Q.1. Write short answers of the following in 2-3 lines of each on your answer sheet. (2^o 12)

- Define trace of a matrix.
- Whether the vectors $u_1 = (1, 2, -3)$, $u_2 = (1, -4, 3)$, are orthogonal or not.
- Write the bases for the vector space $M_{2 \times 2}$ of 2×2 matrices.
- Let V be vector space and $u \in V$ then show that $(-1)u = -u$.
- If A is invertible matrix, then A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$.
- Define Markov Matrix.
- Find inverse of $A = \begin{bmatrix} 5 & 3 \\ 4 & 2 \end{bmatrix}$.
- Let V be a vector space over a field K . Show that for any scalar k and $0 \in V$, $k0 = 0$.
- Show that set of all matrices with trace zero is subspace of vector space of all $n \times n$ matrices.
- If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$.
- Write the basis of $P_n(x)$.
- Define similar matrices.

Subjective Part (3^o 12)

Q.2. (a) Determine whether $(1, 1, 1, 1)$, $(1, 2, 3, 2)$, $(2, 5, 6, 4)$, $(2, 6, 8, 5)$ form basis of R^4 . If not, find the dimension of the subspace they span.
(b) Show that matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ satisfy its characteristic equation.

Q.3. (a) Let W be subspace of R^5 spanned by the vectors $u_1 = (1, 2, -1, 3)$, $u_2 = (2, 4, 1, -2)$, $u_3 = (3, 6, 3, -7)$, $u_4 = (1, 2, -4, 11)$, $u_5 = (2, 4, -5, 14)$. Find basis and dimension of W .
(b) Find Eigen values and corresponding Eigen vectors of $A = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$.

Q.4. (a) Consider the vectors $u_1 = (1, 2, 1, 3, 2)$, $u_2 = (1, 3, 3, 5, 3)$, $u_3 = (3, 8, 7, 13, 8)$, $w_1 = (1, 4, 6, 9, 7)$, $w_2 = (5, 13, 13, 25, 19)$ in R^5 , let $U = \text{span}(u_i)$, $W = \text{span}(w_i)$. Then show that $U = W$
(b) Solve the following system of Linear equations by using Row Operation

$$x + y + 2z = 9$$
$$2x + 4y - 3z = 1$$
$$3x + 6y - 5z = 0$$

Q.5. (a) Find A^{-1} , if $A = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{bmatrix}$.

(b) Apply the Gram-Schmidt process to find an orthogonal basis and then an orthonormal basis for the subspace U of R^4 spanned by $u_1 = (1, 1, 1, 1)$, $u_2 = (1, 2, 4, 5)$, $u_3 = (1, -3, -4, -2)$.

Q.6. (a) If $A = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$ then diagonalize that matrix.
(b) Let $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$. Show that the set $S = \{v_1, v_2, v_3\}$ is basis for R^3 .