

25035

University of SargodhaBS 3rd Term Examination 2019Subject: Computer SciencePaper: Differential Equations (MATH:2215)Maximum Marks: 80

Time Allowed: 2:30 Hours

Note: Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part (Compulsory)

(2*10)

Q.1. Write short answers of the following in 2-3 lines each on your answer sheet.

- Define partial differential equation.
- Define explicit solution.
- Determine whether the DE $u \frac{dv}{dx} + (v + uv - ve^u)du$ is linear in u .
- Verify that $y = e^{-x/2}$ is an explicit solution of the DE: $2y' + y = 0$.
- State the Newton's law of cooling and warming and give its mathematical model.
- Find the integrating factor of the linear equation. $3 \frac{dy}{dx} + 12y = 4$
- Write general form of homogeneous linear nth-order differential equation.
- Determine that the set of functions $f_1(x) = x$, $f_2(x) = x - 1$, $f_3(x) = x + 3$ is linearly independent on the interval $(-\infty, \infty)$.
- Write the auxiliary equation, the roots and the corresponding general solution of DE: $y'' - 10y' + 25y = 0$
- What will be the assumed particular solution y_p for $g(x) = 3x^2 - 5 \sin 2x + 7xe^x$
- Verify that the differential operator $2D - 1$ annihilates the function $y = 4e^{x/2}$.
- Find the linear differential operator that annihilates the function $y = x + 3xe^{6x}$.
- Write Maclaurin series for xe^{3x} in summation notation.
- Write the standard form of first order linear differential equation.
- Write the general solution of the Bessel's equation: $x^2y'' + xy' + \left(x^2 - \frac{1}{4}\right)y = 0$.
- Define separable equation.

Subjective Part (4*12)

Q.2. a) Solve the given IVP by using proper substitution.

$$\frac{dy}{dx} = \frac{3x+2y}{3x+2y+2}, \quad y(-1) = -1$$
b) Determine whether the given DE is exact. If exact, then solve it. $(x^3 + y^3)dx + 3xy^2dy = 0$

Q.3. A tank contains 200 liters of fluid in which 30 grams of salt are dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of 4 L/min; the well mixed solution is pumped out the same rate. Find the number $A(t)$ of grams of salt in the tank at time t .

Q.4. Solve the given differential equation by the method of undetermined coefficients-superposition approach. $y'' + y = 2x \sin x$

Q.5. Solve the given system of differential equations by systematic elimination.

$$\frac{dx}{dt} = 2x - y$$

$$\frac{dy}{dt} = x$$

Q.6. Find the power series solution of the DE $y'' + x^2y' + xy = 0$ about the ordinary point $x = 0$.

Q.7. Use the improved Euler's method to obtain a 5 decimal approximation of the value $y(1.5)$ for the solution of the initial value problem $y' = 2xy$, $y(1) = 1$ by using $h = 0.1$.